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ABSTRACT

Domestic service robots that support daily tasks are a promis-
ing solution for elderly or disabled people. It is crucial for do-
mestic service robots to explain the collision risk before they
perform actions. In this paper, our aim is to generate a cap-
tion about a future event. We propose the Relational Future
Captioning Model (RFCM), a crossmodal language genera-
tion model for the future captioning task. The RFCM has the
Relational Self-Attention Encoder to extract the relationships
between events more effectively than the conventional self-
attention in transformers. We conducted comparison experi-
ments, and the results show the RFCM outperforms a baseline
method on two datasets.

Index Terms— Future Captioning, Domestic Service
Robots, Relational Self-Attention

1. INTRODUCTION
Domestic service robots (DSRs) that naturally communicate
with users to support household tasks are a promising solution
for elderly or disabled people. DSRs are expected to perform
most tasks autonomously, and so they could damage objects
and themselves. It therefore would be useful if they could ex-
plain the potential risks associated with their actions through
natural language. However, a DSR’s ability to generate natu-
ral language explanations is still insufficient.

Given this background, we focus on future captioning for
daily tasks [1]. Fig. 1 shows a typical use case where a DSR
puts a plastic bottle on a table. In this situation, it would be
desirable to tell the user that “the hand may contact the white
bottle, which may cause the bottle to further contact the apple
next to it, causing the apple to fall.” This task is difficult in
that models need to predict future events and generate cap-
tions. In fact, there is a big gap in the quality of the reference
and the generated sentences by typical video captioning mod-
els, as shown in Sec. 5.

Although there are many existing video captioning mod-
els, those models cannot generate appropriate future captions.
This is because many existing methods insufficiently model
the temporal relationship between the visual features and sen-
tences. The transformer self-attention [2] used in those meth-
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Fig. 1. Overview of RFCM: RFCM generates captions of future
events from past events.

ods typically models the relationship between the visual fea-
tures of the event and the sentence at time t. In addition,
many video captioning methods are inappropriate for future
captioning because those models use the captions after the
next timestep to generate a caption for the next timestep.

In this paper, we propose the Relational Future Captioning
Model (RFCM). The RFCM can generate captions that take
into account the relationship between past events. This is be-
cause it has a source–target attention structure that generates
appropriate captions for future events from the relationships
between events. In this structure, the features derived from
past clips are used as a source, and the features derived from
both past clips and captions are used as the target.

Fig. 1 shows an overview of the RFCM, which consists
of three modules: a Relational Self-Attention (RSA [3]) En-
coder, transformer encoder, and transformer decoder. The dif-
ference with respect to existing methods is that our method
includes the RSA Encoder to more effectively extract the rela-
tionships between events than the conventional self-attention
in transformers. Our code is available at this URL1.

The main contributions of this paper are as follows:

• We propose the RFCM, a crossmodal language genera-
tion model for the future captioning task.

• The RSA Encoder is introduced to extract the relation-
ships between events more effectively than the conven-
tional self-attention in transformers. The output of the
RSA Encoder is used to compute a source–target atten-
tion to obtain fine-grained caption representations.

1https://github.com/keio-smilab22/RelationalFutureCaptioningModel
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Fig. 2. The framework of RFCM. In the figure, Norm denotes layer
normalization.

2. RELATED WORK
There have been many studies in the field of caption genera-
tion [4–10]. This field includes image captioning and video
captioning. [8] is a survey paper in the image captioning field.
It provides a comprehensive review of existing deep-learning-
based image captioning models. [11] is a survey paper in the
video captioning field. It provides a comprehensive survey on
the video captioning field and classifies the methods, standard
datasets, and standard metrics in this field.

The field of video captioning can be divided into sev-
eral subtasks such as a video captioning task, dense video
captioning task, and future captioning task. The video cap-
tioning task involves generating a description about an in-
put event. Many video captioning models have been pro-
posed [4, 7, 12–14]. [13, 14] are typical examples of the nu-
merous pre-training models. The effectiveness of these mod-
els has become well known thanks to recent studies. The
dense video captioning task involves the generation of de-
tailed captions. [5, 15, 16] are representative dense video cap-
tioning models. The future captioning task is the task dealt
with in this paper. [8, 17, 18] are representative future cap-
tioning models. [17] generates explanatory sentences of near
future events using in-vehicle camera images and vehicle mo-
tion information observed from past to present. Tasks similar
to the future captioning task include the video-and-language
event prediction task [19] and the video prediction task [20].
These tasks all involve predicting future events.

3. PROBLEM STATEMENT
Our target is to generate a sentence describing the next event
in the video, which we call the future captioning task [1].
Fig. 1 shows a typical scene. In this task, the desired behavior
is to generate a description by inferring the situation at time
t+ 1 given the clips up to time t.

The task is characterized by the following:
• Input: video clips up to time t. We define the term

“clip” as a sequence of frames representing an event.
• Output: a sentence describing an event that is expected

to occur at time t+ 1.
We assume that pretraining on other tasks is not allowed be-
cause knowledge transfer is outside the scope of this study.

4. PROPOSED METHOD
Fig. 2 shows the framework of the RFCM. The input to the
RFCM x ∈ R(k+1)×din is defined as x = {xt−k, ...,xt},

where xt ∈ Rdin and k ∈ N denote the clip at time t and the
number of input events that occurred before t, respectively.

From x, Zt−k:t+1 ∈ R(k+2)×din is obtained as follows:

zτ =

{
fz(xτ ) (τ > t)
fz(xτ ,xt) (τ ≤ t),

Zt−k:t+1 = {zt−k; ...; zt+1},
where τ = t − k, ..., t + 1, fz(·) denotes a linear transfor-
mation. Zt−k:t+1 contains information on an event sequence.

4.1. RSA Encoder
The RSA Encoder uses Relational Self-Attention [3] and ex-
tracts the relationships between the events. The RSA Encoder
consists of Nr RSA layers. In the first layer, positional encod-
ing using trigonometric functions is performed for Zt−k:t+1

using the procedure described in [2].
Then, query Qr ∈ Rdrsa , key Kr ∈ R(k+2)×drsa , and

value Vr ∈ R(k+2)×drsa are obtained as follows:
Qr = zt,

Kr = Vr = Zt−k:t+1,

where drsa denotes the size of each layer. Next, the basic ker-
nel φp ∈ Rk+2 and relational kernel φh ∈ Rk+2 are obtained
as follows:

φp = WpQr,

Qr′ = {Qr; ...;Qr} ∈ R(k+2)×drsa ,

φh = Whfflatten(Qr′ ⊙Kr),

where fflatten(·) denotes flattening. Next, relational context
Φg ∈ R(k+2)×drsa obtained as follows:

Φg = Vr +WgV
⊤
r Vr.

Finally, RSA φ ∈ Rdrsa is obtained as follows:
φ = (φp +φh)

⊤Φg.

RSA φ contains information about the relationships be-
tween input events. To use φ as a latent feature at time
t, we replace zt with φ. From this, we obtain hr =
{zt−k; ...; zt−1;φ; zt+1} ∈ R(k+2)×drsa . The output of layer
hnr

(nr = 1, ..., Nr) is obtained by applying a feedforward
network (FFN) and layer normalization (LN) layers to hr.

The output of the encoder hrsa ∈ R(k+2)×drsa is given by
hrsa = fLN(fFFN(hNr)), where fFFN(·) and fLN(·) denote
the FFN and LN layers, respectively.

4.2. Transformer encoder/decoder
The transformer encoder consists of Ne encoder layers. Each
layer consists of a Masked Multi-Head Attention (MMHA),
Multi-Head Attention (MHA), and FFN layers.

The input to the encoder is hc = {Zt−k:t+1;T } ∈
R(k+I+2)×din , where I denotes the maximum length of sen-
tences. During training, T ∈ RI×din denotes the text features
obtained by embedding a reference sentence at time t + 1,
yt+1 with the BERT embedder [21]. During inference, T
denotes the text features for the generated words ŷt+1,1:j−1

when the j-th word is generated.
The input to the ne+1-th layer is hne

(ne = 0, ..., Ne−1).
We set h0 = hc. In the MMHA layer, query Qe ∈



R(k+I+2)×de , key Ke ∈ R(k+I+2)×de , and value Ve ∈
R(k+I+2)×de (de = denc/Nh) are obtained as Qe = W

(e)
q hne

,
Ke = W

(e)
k hne , and Ve = W

(e)
v hne (e = 1, ..., Nh), where

Nh and denc denote the number of attention heads and the size
of each layer, respectively. During training, in the MMHA
layer, we mask the m-th and subsequent word tokens to pre-
vent the encoder from using the information of the words in
the m-th word prediction (teacher forcing). To obtain atten-
tion AMMHA ∈ R(k+I+2)×denc from Qe,Ke, and Ve, we
used the computation shown in [2]. Then, in the MHA layer,
attention AMHA is obtained using the same computation used
in the MMHA layer, where henc, Qe, Ke, and Ve are re-
placed by AMMHA, Qe′ , Ke′ , and Ve′ , respectively. The out-
put of the ne + 1-th encoder layer, hne+1 ∈ R(k+I+2)×denc ,
is given by hne+1 = fLN(fFFN(AMHA)). The output of the
encoder is hNe

.
The transformer decoder takes as inputs hrsa and hNe

.
This module consists of Nd decoder layers. The structure
of each layer is similar to that of the MHA and FFN layers
in the transformer encoder. However, there is a difference
in that each layer has the source–target attention structure.
Therefore, the query is created based on hrsa, whereas the
key and value are created based on hNe

. The output is hNd
∈

R(k+I+2)×ddec , where ddec denotes the size of each layer.
Finally, the prediction probability of the generated word

p(ŷt+1,j) ∈ RNv is given by p(ŷt+1,j) = softmax(fgen(hNd
)),

where Nv denotes a vocabulary size and fgen(·) denotes the
computation by the first fully connected, GELU, LN, and
final fully connected layers.

The global loss function L is defined as:
L = λceLCE(yt+1, p(ŷt+1)) + λiwpLiwp(yt+1,1, p(ŷt+1,1))

+ λcorrLcorr + λmseLMSE(xt+1, zt+1),

where LMSE(·, ·) and LCE(·, ·) denote the mean square error
and the cross entropy loss functions, respectively. Here, λce,
λcorr, λmse and λiwp are hyperparameters. Lcorr penalizes the
case where ŷt+1 describes an event that occurs before or after
t. Liwp penalizes the case where the predicted word y∗t+1,1

is incorrect. This is defined as Liwp(yt+1,1, p(ŷt+1,1)) =
γiwpLCE(yt+1,1, p(ŷt+1,1)), where γiwp = 1/W .

5. EXPERIMENTS
5.1. Dataset
In the experiment, we evaluated our model on the YouCook2-
FC and BILA-caption datasets. The YouCook2-FC dataset is
a dataset for the future captioning task. Generally, in cook-
ing, the next procedure is determined based on the previous
procedure. We built the YouCook2-FC dataset based on the
YouCook2 dataset [22]. We set the number of samples in-
cluded in the training, validation, and test sets to 7435, 1569,
and 3035, respectively.

The BILA-caption dataset was newly built to evaluate fu-
ture captioning models that describe likely collisions in object
placement tasks. Fig. 1 shows a typical sample from of the
BILA-caption dataset. To build the dataset, we extended SIG-

Verse [23], which was used in the World Robot Summit 2018
Partner Robot Challenge/Virtual Space competition [24]. In
the simulator, a DSR placed a randomly selected everyday
object (e.g., a bottle or can) in the center of one of five types
of furniture (e.g., a table or shelf). Each sample was anno-
tated with a statement explaining the situation that occurred
as a result of the robot placement action. The dataset consists
of 1K videos and 1K english captions. The total and average
lengths of the videos are 2.2 h and 8 s, respectively. In the
dataset, each clip was given a sentence explaining dangerous
events (e.g., collision events) and their causes. The vocabu-
lary size is 245 words. We also set the number of samples
included in the training, validation, and test sets to 800, 100,
and 100, respectively.
5.2. Experimental setup
We preprocessed clips in the datasets as follows. For the
YouCook2-FC dataset, we trimmed the videos using the
given start and end times. For the BILA-caption dataset, we
trimmed the videos so that the clip starts when the arm of the
DSR starts to move and ends when one of the following two
conditions have been met: a collision event has occurred and
more than 4 s have passed since the start time.

Each clip was first converted to 0.6 and 8 fps for the
YouCook2-FC and BILA-caption datasets, respectively. For
the YouCook2-FC dataset, we used the procedure shown
in [25]. For the BILA-caption dataset, we used S3D [26]
pretrained on the Howto100m dataset [27] to obtain 512-
dimensional features. Then, we used a fully connected layer
to obtain 384-dimensional features.

The experimental setup was as follows: the optimizer,
learning rate, batch size, and number of epochs were Adam
(β1: 0.9, β2: 0.999), 1.0e-4, 16, and 25, respectively. For each
module, Ne, denc, Nh, Nd, ddec, Nr, and drsa were 3, 384, 12,
3, 384, 2, 384, respectively. For the loss function, λce, λiwp,
λcorr, λmse were 30, 1.0, 0.1, 0.005, and 10, respectively. For
Liwp, we handled the words that appear more than nth times.
We set nth to 30. We also sets W for the YouCook2-FC and
BILA-caption datasets to 3000 and 1000, respectively. The
number of trainable parameters of RFCM and the number of
multiply-add operations are 3.1M and 540M, respectively.

The training was conducted on a machine equipped with
an NVIDIA Tesla V100 SXM2 with 16 GB of GPU memory,
240 GB RAM, and an Intel Xeon Gold 6148 processor. It took
6.2 and 1.6× 10−1 h to train our model on the YouCook2-FC
and BILA-caption datasets, respectively. Similarly, inference
took 1.7×10−2 and 4.9×10−2 s/sample on the YouCook2-FC
and BILA-caption datasets, respectively. As a condition for
early stopping, we used the generalization described in [28].
5.3. Quantitative results
We compared RFCM with Memory-Augmented Recurrent
Transformer (MART [7]). We selected MART as the baseline
because it is a representative method for video captioning
tasks and can be applied to future captioning tasks. Ta-
ble 1 shows the quantitative results on the YouCook2-FC and



Table 1. Quantitative comparison and ablation studies. The best scores are in bold.
YouCook2-FC BILA-caption

Methods BLEU4↑ METEOR↑ ROUGE-L↑ CIDEr-D↑ BLEU4↑ METEOR↑ ROUGE-L↑ CIDEr-D↑
MART [7] 6.85±0.18 14.24±0.07 30.80±0.21 20.86±1.07 19.01±0.74 21.02±0.45 30.30±0.64 37.33±4.37

Ours (w/o RSA) 6.70±0.36 14.14±0.50 30.18±0.18 21.26±2.83 20.37±0.36 22.04±0.19 40.67±0.48 44.65±4.89

Ours (w/o Transformer Decoder) 6.68±0.13 14.09±0.15 30.16±0.31 19.75±1.41 21.08±1.62 22.39±0.84 40.92±1.32 45.05±6.72

Ours (RFCM) 7.03±0.15 14.53±0.09 30.49±0.21 21.32±1.09 21.74±1.02 22.74±0.57 41.44±0.86 49.61±8.02

BILA-caption datasets. The mean and standard deviation
were computed on five experimental runs.

The evaluation of the generated sentences was based
on several standard metrics for video captioning tasks:
BLEU4 [29], ROUGE-L [30], METEOR [31], and CIDEr-
D [32]. The primary metric was CIDEr-D.

First, we compared the models on the YouCook2-FC
dataset. The table shows that the CIDEr-D score was im-
proved by 0.46 points. The BLEU4 and METEOR scores
were also improved by 0.18 and 0.29 points, respectively.

Next, we compared the models on the BILA-caption
dataset. The table shows that the CIDEr-D score was dras-
tically improved by 12.28 points. The other metrics scores
were also improved. These results indicate that the RFCM
generated sentences more appropriately than the baseline.
5.4. Qualitative results
Figs. 3-4 show the qualitative results on the YouCook2-FC
and BILA-caption datasets. In the figures, the events are
shown in chronological order. Some events are omitted due
to space limitations.

The sample in Fig. 3 illustrates a successful case on the
YouCook2-FC dataset. In this example, the object added to
the pan was “chopped tomatoes.” The baseline method incor-
rectly described it as “the chopped onions and ginger.” In con-
trast, our method appropriately described it as “tomato puree.”
This result indicates that our method was able to appropriately
predict the next step and generate a caption.

Similarly, the sample in Fig. 4 illustrates a successful case
on the BILA-caption dataset. In this example, the grasped ob-
ject was “the white bottle” and the collided object was “the
camera.” The baseline method incorrectly described the col-
lided object as “a black teapot.” In contrast, our method ap-
propriately described them as “a white jar” and “the camera,”
respectively. This result indicates that our method could ap-
propriately describe the characteristics of the objects.
5.5. Ablation study
We conducted ablation studies for each module. Table 1 quan-
titatively shows the mean and standard deviation of five ex-
perimental runs. We investigated which module contributed
the most to the performance improvement using two ablation
conditions: (a) w/o RSA, where we used the standard MHA
layer [2] instead of the RSA layer, and (b) w/o transformer
decoder, where we removed the transformer decoder.

Comparing the results obtained under conditions (a) and
(b) with the results of the proposed method on the YouCook2-
FC dataset, the CIDEr-D score decreased by 0.06 and 1.57

Fig. 3. The successful examples on the YouCook2-FC dataset. Top
figures show events. The bottom table shows a reference sentence
and sentences generated by the baseline and our methods.

Fig. 4. The successful examples on the BILA-caption dataset.

points, respectively. This indicates that the transformer de-
coder contributed the most to the performance improvement.

Similarly, comparing results obtained under the condi-
tions (a) and (b) with the results of the proposed method on
the BILA-caption dataset, the CIDEr-D score decreased by
4.96 and 4.56 points, respectively. This indicates that the RSA
layer contributed the most to the performance improvement.

6. CONCLUSIONS
In this paper, we focused on the future captioning task, which
is a task to generate a description about a future event. Specif-
ically, we proposed a future captioning model for daily tasks.

The main contributions of this paper are as follows:

• We proposed the RFCM, a crossmodal language gen-
eration model that can generate a description about a
future event.

• The RSA Encoder is introduced to extract the relation-
ships between events more effectively than the conven-
tional self-attention in transformers.

• The RFCM outperformed the baseline method on two
datasets, BILA-caption and YouCook2-FC.
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