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In this paper, we focus on the task of visualizing important regions in an image as high-quality visual explanations
of the model’s decisions with a clear theoretical background. We introduce a novel calculation method for Layer-
wise Relevance Propagation (LRP) specifically tailored to models featuring skip connections such as ResNet. This
method’s strength lies in its adaptability, as the backpropagation technique is distinctly defined for each layer,
enhancing its extensibility. To validate our method, we conduct an experiment on the CUB-200-2011 dataset.
The proposed method successfully generates appropriate explanations and, based on the Insertion-Deletion score,
outperforms the baseline methods.

1. Introduction

The widespread adoption of neural networks underscores

the critical importance of explainability of these models

[Shrikumar 17] [Ribeiro 16]. The European Parliament has

even proclaimed that AI systems must be safe and trans-

parent in its AI Act [Madiaga 23] promulgated in December

2023. This strengthens the needs of accurate and meaning-

ful explanations in neural network models.

However, current methods often lack transparency, lead-

ing the interpretation of the results to be a non-trivial task

[Molnar 20]. Additionally, the black-box essence of neural

network architectures tends to veil the underlying logic of

their decision-making processes. This lack of transparency

poses significant challenges in verifying the validity of the

models’ classifications, necessitating a rigorous assessment

to determine if they are based on pertinent or irrelevant fac-

tors. To address this issue, research in eXplainable Artificial

Intelligence (XAI) is aiming to delve into the inner workings

of neural networks and to develop trustworthy models.

The generation of visual explanations within neural net-

works poses a significant challenge, necessitating the pre-

cise extraction of critical areas [Jacovi 23]. For example,

the current Layer-wise Relevance Propagation (LRP) im-

plementation encounters notable challenges when applied

to ResNet architectures. ResNet’s residual connections cre-

ate non-linear and multiple relevance pathways, which are

not handled by the typical relevance attribution process of

LRP. Another difficulty in this process is the frequent ab-

sence of a clear and definitive ground truth, which serves as

a benchmark for validating these explanations. This task

demands a meticulous balance in identifying important ar-

eas, ensuring that the focus is neither excessive nor insuf-

ficient. Consequently, the explanations generated by LRP

for ResNet models often do not show reliable or insight-

ful results, as shown in Section 6. Therefore, while LRP

offers a framework for relevance attribution in neural net-

works, its limitations, particularly in handling architectures

like ResNet, presents a challenge, underscoring the pressing

need for advanced methodologies in this domain.
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For models based on Convolutional Neural Networks

(CNNs), a multitude of studies have put forward method-

ologies for generating visual explanations, with notable ex-

amples including GradCAM [Selvaraju 17], LIME [Ribeiro

16], and RISE [Petsiuk 18]. These techniques predomi-

nantly rely on predefined computational approaches to for-

mulate explanations. While these methods are generally

agnostic to the specific architecture of the model, they en-

counter limitations in generating tailored explanations for

ResNet architectures, often resulting in attending irrelevant

areas, as shown in Section 6.

Another notable method is LRP [Bach 15], which employs

backpropagation from the output for explanation genera-

tion. Nevertheless, this method has only been applied to

models without residual connections, and its extension to

models incorporating such connections such as ResNet re-

mains an area yet to be explored.

In this study, we extend the conventional method of

generating explanations for ResNet models by integrating

LRP. LRP is distinguished by its well-established theoret-

ical framework and transparent computational processes.

Thus, using rule-based explainers, we are aiming to gener-

ate high-quality explanations. Our approach leverages the

clarity and transparency inherent in LRP to elucidate the

decision-making processes within ResNet models, thereby

contributing to a deeper understanding and improved in-

terpretability of these neural networks.

Our study distinguishes itself from existing research

through two primary innovations.

• We introduce a novel calculation method for LRP,

specifically tailored to models featuring skip connec-

tions. This novel approach is designed to adapt LRP’s

methodology to the unique architectural characteris-

tics of such models, enhancing its applicability and

effectiveness.

• We implement the Contour Component Choice (C3)

mechanism. This mechanism significantly elevates the

quality of the generated explanations by strategically

selecting the most pertinent area.

1



Figure 1: Example of an input image (left) and the visual

explanation (right).

2. Problem Statement

In this paper, we focus on the task of visualizing im-

portant regions in an image as a visual explanation of

the model’s decisions. The pixels that contributed to the

model’s prediction should be attended.

Figure 1 shows an example of an CUB-200-2011 image.

The left and right figures show the input image and the

visual explanation, respectively.

The input is an image x ∈ Rc×w×h, where c, w, and h

denote the number of channels, width and height of the in-

put image, respectively. The output p(ŷ) ∈ Rc denotes the

predicted probability for each class, where C is the num-

ber of classes. Additionally, the importance of each pixel

is obtained as a heatmap α ∈ Rw×h which is used as a vi-

sual explanation. In this paper, we assume that the model

is based on a ResNet architecture. The Insertion-Deletion

score [Petsiuk 18] is used as an evaluation metric for expla-

nation generation.

3. Proposed Method

3.1 Relevance backpropagation
We extend Layer-wise Relevance Propagation (LRP)

[Bach 15] for use in models with residual connections, specif-

ically developing LRP for ResNet [He 15] models. The ex-

tension implemented in our method defines the calculation

method of LRP for models with residual structures. Con-

sequently, this approach is generally applicable to models

possessing residual blocks.

We propose a calculation method for LRP in models fea-

turing skip connections. We also introduce C3-LRP (Con-

tour and Component Choice), that take the most signifi-

cant regions from the generated attention areas based on

the greatest contour.

ResNet50 consists of Convolution layers, Batch Normal-

ization layers, Max Pooling layers, 16 Bottleneck layers, a

Global Average Pooling (GAP) layer, and a Linear layer.

Each Bottleneck consists of three layers – a 1 × 1 convolu-

tion layer for dimensionality reduction, a 3× 3 convolution

for processing, and another 1× 1 convolution to restore di-

mensions. We treat each bottleneck block as a single dense

layer with its unique LRP rule. The Relevance score can

then be computed via backpropagation by applying an LRP

rule for each encountered layer.

Figure 2 shows a schematic diagram of the calculation

Figure 2: Schematic diagram of the calculation method for

Relevance R(x) for ResNet50. The black path represents

the forward propagation, where p(ŷ) is computed based on

the input image x. The purple path illustrates how Rele-

vance R(x) is calculated by back-propagating R(ŷ) using

our method.

Figure 3: Schematic diagram of a Bottleneck layer from

ResNet model (left) and how it is considered when comput-

ing the Relevance.

method for Relevance R(x) for ResNet50. The input is an

image x ∈ R3×h×w where h and w denote the height and

width of the image, respectively.

Figure 3 shows a schematic of the calculation method

for the Relevance R(L) of the layer L. For computing R(L)

based on R(L+1), we consider a Bottleneck block as a single

layer with z as an input and z′ as an output.

This allows the backpropagation to be calculated in

the same manner as for other layers. We consider z ∈
RcI×hI×wI and z′ ∈ RC×U×V where C, U , and V represent

the number of output channels, height, and width, respec-

tively.

The backpropagation of R(L+1) is represented as follows,

with ε ensuring numerical stability by avoiding a zero divi-

sion :

RL(zij) =

U∑
u

V∑
v

zij
∂z′uv
∂zij

z′uv + ε
RL+1(z′uv) (1)

For Convolution layers, Batch Normalization layers, Max

Pooling layers and the GAP, the same formula is applied.

For the Linear layer, the Relevance of a unit j in this layer

L is computed as follows:

RL(hj) =
∑
k

wkjhj∑
j′ wkj′hj′ + ε

RL+1(h′
k) (2)

where hj , h
′
k and wkj denote activation of the j-th unit, ac-

tivation of the k-th unit and the weight connecting unit j in

the Linear layer to the unit k of the layer L+1, respectively.

3.2 Obtaining the final heatmap with C3

To prevent the relevance map to focus on inappropri-

ate areas such as the background, we introduce C3 to ex-

tract the most noteworthy area in order to obtain the finale

heatmap αC3 .

First, R(x) is reduced to a 28 × 28 αCR to remove fine

noise and unnecessary information. Then, based on the

largest contour, a binary mask αC1 is created. As with C1C
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Table 1: Quantitative comparison results between methods.
Method Acc ↑ Insertion ↑ Deletion ↓ ID score ↑
RISE [Petsiuk 18] 0.815 ± 0.001 0.371 ± 0.015 0.043 ± 0.004 0.328 ± 0.004
GradCAM [Selvaraju 17] 0.815 ± 0.001 0.466 ± 0.019 0.156 ± 0.008 0.310 ± 0.020
LRP [Bach 15] 0.815 ± 0.001 0.063 ± 0.007 0.051 ± 0.006 0.011 ± 0.001

ABN [Fukui 19] 0.642 ± 0.009 0.282 ± 0.052 0.075 ± 0.011 0.207 ± 0.054
Ours 0.815 ± 0.001 0.685 ± 0.015 0.017 ± 0.001 0.668 ± 0.015

(a) (b) (c) (d) (e) (f)
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Figure 4: Qualitative Results.

[Iida 23], the largest connected component is calculated and

another binary mask αC2 is created. These two masks are

then combined by taking the bitwise AND operation of the

two masks to obtain αC3 :

αC3 = αC1 ∧αC2 (3)

The final mask αC3 is obtained by multiplying the original

mask with the combined mask converted to a boolean ar-

ray to keep the original pixel values where both the largest

contour or the largest connected component are present:

αC3 = αCR ⊙αC3 (4)

Finally, αC3 is expanded to w × h to obtain the final rele-

vance map α.

4. Experiment

4.1 Dataset
The Caltech-UCSD Birds-200-2011 (CUB-200-2011)

dataset [Wah 11] was used for experimental evaluation. Ac-

cording to [Wah 11], a list of 278 bird species was compiled

from an online field guide. Next, all images were down-

loaded from the corresponding Wikipedia page or fed to

Flickr as query terms, and up to 40 images were down-

loaded for each species. We used the CUB-200-2011 dataset

because it is a standard dataset for visual explanation gen-

eration tasks.

It contains 11,788 images of 200 subcategories belonging

to birds. According to the standard setting [Wah 11], the

dataset was divided with 5,794 images for training, 200 for

validation and 5,794 for testing.

4.2 Experiment settings
The input images were resized to 224×224. During train-

ing, we flipped, rotated, cropped and changed brightness to

images for data augmentation. The training, validation,

and test sets were used for parameter training, hyperpa-

rameter validation, and evaluation, respectively. We used

the SGD optimizer with a learning rate of 1.0 × 10−3 and

a batch size of 32.

The number of parameters and the number of multiply-

accumulate operations for the proposed method were 23.9M

and 65.4G, respectively. For training, a GeForce3090 GPU

and an Intel Core i9 processor were used. It took approxi-

mately 2 hours to train a ResNet50 model on the CUB-200-

2011 dataset. The inference time was approximately 0.1s.

We stopped the training if the loss on the validation set did

not improve for six consecutive epochs.

4.3 Quantitative results
Table 1 presents the quantitative results of the com-

parison between the baseline methods and the proposed

method. Five experiments were conducted for each method.

Additionally, the bold values in Table 1 represent the best

values. As the baseline methods, we used RISE [Petsiuk

18], GradCAM [Selvaraju 17], Layer-wise Relevance Prop-

agation (LRP) [Bach 15], and Attention Branch Network

(ABN) [Fukui 19]. The reason for choosing ABN as a

baseline method is because it is a standard method that

uses ResNet as the backbone network. On the other hand,

RISE, GradCAM, and LRP were chosen as baseline meth-

ods because they are standard among methods applicable

to generic models.

In this experiment, the evaluation metrics used were

Accuracy, Insertion score, Deletion score, and Insertion-

Deletion score (ID score). Additionally, as it is the most

standard metric, we used ID score as the primary evalu-

ation metric. The Insertion score and Deletion score are

calculated as the Area Under Curve (AUC) of the Inser-

tion and Deletion curves, respectively. Additionally, the

ID score is defined as the difference between the Insertion

score and Deletion score. The Insertion and Deletion curves

represent the changes in prediction when important regions

based on the final relevance map α are inserted or deleted,

respectively. The details are defined as follows. First, sort

the elements of α in descending order as αi1,j1 , αi2,j2 ,…
, αiw,ih , and define the sets An, in, dn as follows:

An = {(ik, jk) | k ≤ n} (5)

(in,dn) =

{
(xij , 0) if (i, j) ∈ An

(0, xij) if (i, j) /∈ An

(6)

Here, n represents the number of pixels to insert or delete.

When in and dn are input into the model, we denote the

outputs as y(ins,n) and y(del,n), respectively. The curves

plotted for n, y
(ins,n)
C and y

(del,n)
C are the Insertion and Dele-
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Table 2: Quantitative results of the Ablation Study.
Model Method Insertion ↑ Deletion ↓ ID score ↑
(i) None 0.250± 0.017 0.018± 0.001 0.232± 0.017
(ii) C1C [Iida 23] 0.642± 0.009 0.042± 0.004 0.600± 0.006
(iii) C3 0.685 ± 0.015 0.017 ± 0.001 0.668 ± 0.015

tion curves, respectively, where C represents the class to

which x belongs.

From Table 1, in the primary metric, the ID score, RISE,

GradCAM, LRP, ABN, and the proposed method scored

0.328, 0.310, 0.011, 0.140, and 0.668 respectively. The pro-

posed method exceeded the highest among baselines, RISE,

by 0.340 and achieved both the best performances for In-

sertion and Deletion scores. The performance difference in

the primary metric, the ID score, and the Insertion score

was statistically significant (p < 0.05).

4.4 Qualitative results
Figure 4 shows the qualitative results. Column (a) dis-

plays the original images, while columns (b)-(e) show the

explanations generated by the baseline methods overlaid on

the original images, and column (f) represents the results

generated by the proposed method. From column (b) in

Figure 4, the explanations generated by RISE strongly fo-

cus on specific parts like the bird’s eyes and feathers, but

fail to focus on the bird as a whole. Furthermore, column

(c) shows that the explanations generated by GradCAM

have attention regions that encompass the whole bird, but

also focus on the background surrounding the bird. Next,

from column (d), the explanations generated by LRP are

inappropriate, as most regions have equal attention. Col-

umn (e) shows that the explanations generated by ABN are

spotty and of low quality. On the other hand, column (f)

shows that the proposed method focuses in detail on the

entire bird, especially on the eyes, and has a low degree of

attention to the background, thus generating appropriate

explanations.

4.5 Ablation study
We investigated the contribution of C3 by removing it

(Model i) or replacing it with C1C [Iida 23] (Model ii).

From Table 2, the ID score in model (i) was 0.600, which

is a decrease of 0.436 compared to model (iii). Also, the

ID score in model (ii) was 0.600, which is a decrease of

0.068 compared to model (iii). This suggests that C3 was

effective to exclude the background and areas not directly

related to classification, thereby promoting the generation

of high-quality explanations.

5. Conclusion

This study dealt with the generation of visual explana-

tions for the rationale in the multi-class classification prob-

lem of predicting the bird species from an image. The con-

tributions of this research are as follows:

• We proposed a method for calculating Layer-wise Rele-

vance Propagation (LRP) in models with residual con-

nections, taking the example of ResNet.

• We introduced the C3-LRP, which improves the qual-

ity of explanations by selecting the most noteworthy

area based on the generated attention regions.

In the standard evaluation metrics for this task, such as

the Insertion score and ID score, the proposed method out-

performed the baseline methods.
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