3D 視覚言語基盤モデルと劣モジュラ最適化による 移動ロボットの環境探索

○鈴木駿太郎,松尾榛夏,杉浦孔明(慶應義塾大学)

本研究では、屋内環境の効率的な観測を目的とする、ロボットの観測姿勢集合における組合せ最適化問題を扱う. 本タスクでは、できる限り多くの日常物体が観測可能であることが望ましい.これは、NP 困難な問題であり、観測 姿勢数の増加に伴い組合せ爆発を起こす.既存手法では、観測時の遮蔽について遮蔽物体の存在領域のみを考慮し ており、視野の遮蔽についての考慮が不十分であった.そこで本研究では、遮蔽を考慮した、観測姿勢集合の劣モ ジュラ最適化手法 Occlusion Aware SOPO (OA-SOPO)を提案する.本手法の評価に際して、Matterport3D を 基盤とするタスク環境を構築し、選択された観測姿勢集合を用いて観測画像を収集した.結果として、OA-SOPO は環境内における日常物体の観測割合においてベースライン手法を 0.32 ポイント上回った.

1. はじめに

移動ロボットは、災害救助、生活支援、アクセス困 難地域での監視、物資の配送、農業での収穫作業など、 多岐にわたる分野での活躍が期待されている.特に、生 活支援ロボットの活用においては、高齢者や障がいを 持つ人々の、家の中での日常生活におけるタスクを効 果的に支援する事が期待される.こうしたロボットに とって、屋内環境における環境情報を事前に把握するこ とは、日常タスクを効果的に支援する上で重要である.

そこで、本研究では Combinatorial Observation Pose Optimization (COPO) タスクに着目する. COPO タ スクは、効率的な環境観測のためのロボット姿勢集合 の組合せ最適化問題であり、NP 困難である. 観測姿勢 数の増加に伴い観測姿勢集合の選択における計算量は 指数関数的に増加する. しかし、無数の観測姿勢を全 て網羅することは現実的でない. よって、環境に含ま れる日常物体を効率的に観測する観測姿勢集合の選択 は困難である. また、各観測姿勢において観測可能な 日常物体は物体間の遮蔽に影響されるため、観測姿勢 の選択時には観測領域の遮蔽の考慮が求められる.

本タスクにおいて良好な結果が報告されている SOPO [1] では、劣モジュラ性および open-vocabulary な 3D 特徴量を用いて生成された物体存在マップ群を用いて 観測姿勢集合を選択している.しかし、環境と物体存在 マップ間の一部に乖離が報告されている.この乖離に 起因して、選択された観測姿勢集合により取得された 画像群の一部において、日常物体が配置されていない 領域を観測してしまう傾向があった.また、観測時の遮 蔽については、遮蔽物体の存在領域のみを考慮してお り、視野の遮蔽についての考慮は不十分であった.その ため、壁により観測が妨げられてしまう傾向があった.

本研究では、Occlusion Aware SOPO (OA-SOPO) を提案する.これは、劣モジュラ性を利用した観測姿勢 集合の最適化手法であり、屋内環境においてできる限 り多くの日常物体の観測を目的とする、OA-SOPO で は、open-vocaburaly な 3D 特徴量およびテキストプロ ンプト群から生成した 3 種の物体存在マップを用いて、 各観測姿勢により変化する観測領域の物体存在スコア を評価する.加えて、観測姿勢における遮蔽を考慮す るための Adaptive Obejct Occurrence Scorer (AOOS) を導入する.

提案手法における新規性は以下である。

ロボットの観測領域を考慮し、屋内環境を効率的

図1 COPO の代表例

に観測するための観測姿勢集合を選択する OA-SOPO を提案する.

 各観測姿勢における物体存在スコアを評価するため、Path Free Map により物体存在領域を限定し、 Positive Occurrence Map および Negative Occurrence Map によりロボットの観測領域における遮蔽を考慮する AOOS を導入する。

2. 関連研究

Active Sensing の分野では,多くの既存研究が存在 する [1–4]. ロボットの coverage タスクを扱う [3,4] で は,情報利得の最大化を目的として,グラフマッチン グおよび探索ベースの手法を用いた経路の最適化手法 を提案している. [1] は,open-vocabulary な 3D 特徴 量および劣モジュラ最適化手法を用いた,ロボット姿 勢集合の選択手法を提案している.本タスクでは,単 数 [1,3] および複数 [4] のロボットが環境内を複数視点 から観測する状況において,それぞれの視点から取得 された情報間の影響を考慮することが求められる.

3. 問題設定

本研究では、ロボットの 2D 姿勢集合最適化を目的 とする COPO タスクを扱う.これは、典型的な組合せ 最適化問題であり、NP 困難である.ここで、最適化さ れた姿勢集合とは環境内の物体を効率的に観測するロ ボット姿勢の組合せを表す.図1に本タスクにおける 代表例を示す.

本タスクにおける入力は、事前に探索して得られた 屋内環境の2Dマップおよび環境中の家具に関する3D 点群である.出力は、環境内の物体観測数を最大化す る観測姿勢の集合である.本論文では、日常物体を、生 活支援ロボットによる把持や移動の対象となる物体と 定義する.具体例として、本やコップが挙げられる.ま た、遮蔽物体について、一定以上の高さがあり、生活

図2 提案手法のモデル構造

支援ロボットの物体探索において視野を妨げる物体と 定義する.具体例として,本棚や壁が挙げられる.ま た,観測姿勢を屋内環境の 2D マップ上における座標 及び向きと定義する.また,本研究では,日常物体の 観測を主眼とし,その操作は扱わない.そして,環境 観測に用いるカメラは1台に限定し,そのパラメータ は既知とする.

4. 手法

図2に提案手法のモデル構造を示す.提案手法は2種類の主要モジュールで構成されており、AOOS および Submodular Pose Optimization Module (SPOpt)である.本モデルへの入力は2種類である.1つ目は、環境内の家具に関する点群 $x_{pcl} \in \mathbb{R}^{M \times 3}$ であり、M は点群の数を表す.2つ目は、事前に探索された2D 占有格子地図 $x_{map} \in \mathbb{R}^{H \times W}$ であり、H、W はそれぞれ2D 占有格子地図の行数および列数を表す.

4.1 Adaptive Object Occurrence Scorer

AOOSは、各観測姿勢の観測領域に対し、日常物体の存在スコアを評価する。物体存在スコアの導出に際して、 open-vocabularyな3D特徴量に基づく、物体存在マッ プを活用する。これにより、大規模データセットに基づ く常識的な推論が可能となり、多様な物体の存在スコア を評価可能となる。ただし、open-vocabularyな3D特 徴量 $F \in \mathbb{R}^{M \times C}$ はSOPO [5]と同様、OpenScene [5] により取得する。ここで、Cはセグメンテーションモ デルにより出力される特徴次元数を表す。

物体存在マップを得るために、Fに対して3種のテ キストプロンプト P_1 , P_2 , P_3 をそれぞれ使用し、そ れぞれのプロンプトに対して物体存在スコアの高い領 域 $F_{\text{likelihood}} \in \mathbb{R}^{3 \times M \times C}$ を取得する.ここで、3種の プロンプトは、以下を使用した.

- P_1 : "Places that are pathway"
- P_2 : "Places to put objects that can be carried"
- P_3 : "Wall and places that occlude vision"

P₁ は通路の領域を取得するためのプロンプトである. 環境内の通路には日常物体が配置されていないという 仮定の下,観測姿勢がカバーすべき観測領域を限定す る意図がある.また,P₂ は棚や机といった日常物体が 置かれやすい領域を取得するためのプロンプトである.

Algorithm 1 各観測姿勢の物体存在スコアの導出

1: Input: o_1, o_2, o_3, a' 2: Output: 0_{a'} 3: $(a'_x, a'_y) = a'$ 4: $a'_{cov} = C(a')$ 5: $q = 1 - o_1$ $(q', o'_2, o'_3) = a'_{cov} \odot (q, o_2, o_3)$ 6: for i = 1 to $H \times W$ do 7: $r_i = \text{Occlusion}(a'_x, a'_y, o'_{3,i})$ 8: if $q'_i > 0$ and $o'_{2,i} > 0$ then 9: 10: $o_{\mathbf{a}',i} = \alpha \ (q_i' + o_{2,i}')$ 11: else 12: $o_{\boldsymbol{a}',i} = q_i' + o_{2,i}'$ 13:end if $o_{\mathbf{a}',i} = (o_{\mathbf{a}',i} - \beta \cdot r_i).\mathrm{Clip}(0,\mathrm{inf})$ 14:15: **end for** 16: $\boldsymbol{o}_{\boldsymbol{a}'} := \{ o_{\boldsymbol{a}',i} | i = 1, ..., H \times W \} \in \mathbb{R}^{H \times W}$

そして、P₃ は遮蔽物体の存在する領域を取得するため のプロンプトである.これにより、ロボットの視野の 遮蔽を考慮する.ただし、それぞれのプロンプトの組 合せを事前に比較し、最も多くの日常物体の観測に寄 与した組合せを採用した.

そして,得られた点群特徴量をそれぞれ 2D グレー スケール画像に変換し,Path Free Map $o_1 = \{o_{1,i} | i = 1, ..., H \times W\}$ および Positive Occurrence Map $o_2 = \{o_{2,i} | i = 1, ..., H \times W\}$,Negative Occurrence Map $o_3 = \{o_{3,i} | i = 1, ..., H \times W\}$ をそれぞれ得る.ただし、グレースケール画像の各ピクセルは閉区間 [0,1] に 正規化されている.

次に,各観測姿勢における観測領域を考える.カメ ラモデルは SOPO と同様のモデルを定義する.このと き,ある観測姿勢 a' がカバーする観測領域 C(a') は以 下で定式化される.

$$\boldsymbol{a}_{\mathrm{cov}}' = C(\boldsymbol{a}') = \begin{cases} 1 & \text{if coverage area} \\ 0 & \text{otherwise} \end{cases}$$

Algorithm 1 に a' の観測領域における物体存在スコア $o_{a'} \in \mathbb{R}^{H \times W}$ の導出アルゴリズムを示す. アルゴリズ ムにおける入力および出力は, $\{o_1, o_2, o_3, a'\}$ およ び $o_{a'} \in \mathbb{R}^{H \times W}$ である. 初めに, a'_{cov} および x 座標 a'_x , y 座標 a'_y をそれぞれ取得する. 次に, o_1 で表され るグレースケール画像を反転し,通路以外の領域 q を特 定する.これは,通路以外の領域を取得することで,観 測姿勢がカバーすべき観測領域を限定する意図がある. そして, o_1 , o_2 , o_3 をそれぞれ a'_{cov} でマスクすること により,カメラモデルのカバー領域を考慮した物体存 在マップ $q' \in \mathbb{R}^{H \times W}$, $o'_2 \in \mathbb{R}^{H \times W}$, $o'_3 \in \mathbb{R}^{H \times W}$ をそ れぞれ得る.その後, $q' \in \mathbb{R}^{H \times W}$ および $o'_2 \in \mathbb{R}^{H \times W}$, $o'_3 \in \mathbb{R}^{H \times W}$ における *i* 番目の微小領域 q'_i および $o'_{2,i}$, $o'_{3,i}$ を以下の処理により集約する.

初めに, a'から $o'_{3,i}$ を観測する際の遮蔽を考慮する ための操作として, Occlusion $(a'_x, a'_y, o'_{3,i})$ を定義する. Occlusion では, (a'_x, a'_y) および $o'_{3,i}$ を入力として, 両 者の線分を考える.そして,線分上におけるスコアの最 大値 r_i を出力とする.ここでは, a'からの観測におい て $o'_{3,i}$ を遮蔽する領域のスコアを新たに取得している.

次に、 q'_i および $o'_{2,i}$ を集約する. このとき、 q'_i およ び $o'_{2,i}$ の両者において正のスコアが得られた場合は係 数 α により重み付けする. これは、重み付けの対象で ある微小観測領域およびその周辺から複数の観測姿勢 が選択されることを意図する. これにより、日常物体 が存在する可能性の高い領域を確実に観測することを 可能にする. 最後に、 q'_1 および $o'_{2,i}$ の集約項に r_i を集 約し、a'における物体存在スコア $o_{a',i}$ を得る. ここで、 r_i の集約では正規化係数 β を設ける. これは、係数 α により重み付けされた物体存在スコアと r_i を調整する 項である.

以上の処理を q' および o'_2 , o'_3 に関する全ての微小 観測領域に対して行うことで, a' の物体存在マップ $o_{a'}$ $= \{o_{a',i} | i = 1, ..., H \times W\} \in \mathbb{R}^{H \times W}$ を得る. このよ うにして, 各観測姿勢における物体存在スコアの集合 が出力 $o_V = \{o_{a'} | a' \in V\}$ として得られる. ここで, Vは入力 x_{map} から得られる観測姿勢の候補集合を表す.

4.2 Submodular Pose Optimization

SPOpt は、カバレッジを最大化する観測姿勢集合を 選択するモジュールであり、SOPO と同様の構造であ る.ここでは、劣モジュラ性に基づく貪欲法 [6] を利用 することで、現実的な制約時間内に近似的な最適姿勢 集合を選択する.本モジュールにおける入力は o_V およ び x_{map} であり、出力は観測姿勢集合 A_K である.た だし、K は集合のサイズを表す.

5. 実験設定

本研究では、実環境から取得された標準的なデータ セットである Matterport3D [7] に基づいて、Gazebo シミュレータ上でタスク環境を 10 種構築した.検証環 境は Matterport3D に含まれる屋内環境のうち、日常 物体が 10 個以上配置された環境をランダムに選択した. 本研究では、連続的な空間における観測が求められる ため、DSR による連続的な観測点への移動が可能なタ スク環境を新たに構築した.ただし、DSR は階の移動 を想定しておらず、各構築環境は 1 階分のみを含むも のとする.ここで、DSR はトヨタ自動車製の Human Support Robot (HSR) [8] を使用した.HSR は World Robot Summit 2020 Partner Robot Challenge/Real Space における標準 DSR である.また、検証における 10 種の屋内環境は、平均して 6.4 部屋および 31.4 個の 家具、36.1 個の日常物体を含む.

次に、本タスクにおける 2D マップの構築手順を示 す.初めに、HSR に搭載された LiDAR センサを用い、 ROS の HectorSLAM [9] モジュールから 2D Map を構 築した.その後、生成した 2D マップを用いて実際に HSR による巡回を実施し、HSR の通過不能領域を特 定した.これらの通過不能領域を対象外とするために 2D マップを修正し、提案手法の入力とした.加えて、 観測姿勢集合の巡回では、2D マップからボロノイ図を 作成し、巡回セールスマン問題を解くことで移動経路 を求めた.

5. 実験結果

6.1 定量的結果

提案手法およびベースライン手法の定量的結果を図3 に示す. 横軸と縦軸はそれぞれ K および環境内の日 常物体総数に対する観測できた日常物体数の割合を表 す. なお,実験は10環境で行い,その平均値および標 準偏差を示す. ベースライン手法として, SOPO [1], Random Method, GPT-40 Methodの3手法を選択し た. Random Methodではランダムな観測姿勢集合を選 択した. GPT-40 MethodではGPT-40 [10]を用いてプ ロンプトから観測姿勢集合を選択した. これらの手法を 選択した理由は以下である. SOPOは, COPO におい て良好な結果が報告されているため選択した. Random Methodは,能動学習における代表的なベースライン 手法とするため選択した. そして, GPT-40 Methodは ナビゲーションを含む行動系列生成タスク [11] におい て良好な結果が報告されているため選択した.

また,評価尺度は,環境の日常物体総数に対する, 観測姿勢集合からの収集画像群において観測された日 常物体数の割合 R_K を用いた.ここで, R_K は $R_K = \frac{1}{n_{max}} \sum_{k=1}^{K} n_k$ で定義する.ただし, n_k および n_{max} は それぞれ k 番目の観測姿勢から観測された日常物体数 および環境内の日常物体総数を表す.なお n_k は, Detic [12] に代表される標準的な物体検出器を使用し,適切 に検出された日常物体のみを手動で数えることにより 得た.このとき,異なる観測姿勢から検出された同一 物体は一度のみ n_k に含めた.本研究では,効率的な日 常物体の観測を,限られた観測姿勢数における日常物 体のカバレッジ最大化と定義する.

1.0 0.8 0.6 Ŗ 0.4 (i) α=1 (ii) α=2 0.2 (iii) $\alpha = 4$ (iv) α=8 0.0 5 10 15 20 25 感度解析の定量的結果 図 5

図3より K=5 の場合, SOPO, Random Method, GPT-40 Method, 提案手法における R₅ は 10 環境で 平均してそれぞれ 0.26, 0.15, 0.22, 0.43 であった. し たがって、提案手法はSOPO, Random Method, GPT-40 Method をそれぞれ 0.17, 0.28, 0.21 上回っており, 提案手法が多様な環境で効率的な観測姿勢集合を選択可 能であると示唆される.同様に、K=25の場合、SOPO、 Random Method, GPT-40 Method, 提案手法におけ る R₂₅ は 10 環境で平均してそれぞれ 0.68, 0.53, 0.58, 1.0 であった. したがって, 提案手法は SOPO, Random Method, GPT-40 Method をそれぞれ 0.32, 0.47, 0.42 上回っており,提案手法では観測姿勢の数が増加した 場合でも環境内の物体を多く観測する観測姿勢集合が 選択可能であると示唆される.

6.2 定性的結果

図4 に, K=8 における(a)提案手法および(b) SOPO の定性的結果を示す. ここに, 左の画像は提案 手法および SOPO を用いて選択された A8 を示してい る.また、右の画像は A8 において収集された観測画 像2例を示しており、緑色の矩形領域は適切に検出さ れた日常物体を示している.ここで、図4において提 案手法および SOPO の選択姿勢集合から収集された観 測画像は、それぞれ環境内の同じ領域を異なる姿勢か ら観測した.このとき、提案手法および SOPO の2例 の観測画像において、適切に検出された日常物体の総 数は、それぞれ6個および13個であった.したがって、 提案手法では観測範囲内の各点における遮蔽を考慮し たスコアを用いることにより, 効率的な観測姿勢集合 の選択が可能であると示唆される.

6.3 感度解析

図5に感度解析の定量的結果を示す.感度解析では α に関して効果的な値を調査した.なお、実験は5環 境で行い,その平均値を示す.本手法における α を (i), (ii), (iii), (iv) においてそれぞれ 1, 2, 4, 8 と定めた. 図5より, R₂₅は(i), (ii), (iii), (iv) においてそれぞ れ, 0.91, 1.0, 0.89, 0.80 であった. このことから, o1 および 02間における物体存在スコアの重複を考慮する 重み付け項 α は、効果的な最適化に貢献したと示唆さ れる. 特に, $\alpha = 2$ のモデルが効果的であったことが 示唆される.

7. 結論

本研究では,組合せ最適化問題であり NP 困難であ る COPO タスクに着目した. COPO タスクでは、モデ ルは観測可能な物体数を最大化するための環境観測姿 勢集合を選択した。10環境を用いて実験を行い。ベー スライン手法を上回る結果が得られた.

謝辞

本研究の一部は, JSPS 科研費 23K28168, JST ムーンシ ョット、NEDOの助成を受けて実施されたものである.

参考文献

- [1] 松尾榛夏,神原元就,杉浦孔明,"マルチモーダル基盤モデルと 劣モジュラ最適化に基づく移動ロボットの環境探索," 第 38 回 人工知能学会全国大会, 2024.
- [2] K. Sugiura, "SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Networks by Drones," IEEE RA-L, vol.3, no.4, pp.2963-2970, 2018.
- [3] T. Kusnur, D. Saxena, and M. Likhachev, "Search-Based Planning for Active Sensing in Goal-Directed Coverage Tasks," in *ICRA*, pp.15–21, 2021.
- N. Karapetyan, A.B. Asghar, et al., "AG-CVG: Coverage [4]Planning with a Mobile Recharging UGV and an Energy-Constrained UAV," in ICRA, pp.2617-2623, 2024.
- [5] S. Peng, et al., "OpenScene: 3D Scene Understanding with Open Vocabularies," in CVPR, pp.815-824, 2023.
- G. Nemhauser, et al., "An Analysis of Approximations for Maximizing Submodular Set Functions-I," Mathematical Programming, vol.14, pp.265–294, 1978.
- [7] A. Chang, et al., "Matterport3D: Learning from RGB-D Data in Indoor Environments," in 3DV, pp.667-676, 2017.
- [8] T. Yamamoto, et al., "Development of Human Support Robot as the Research Platform of a Domestic Mobile Manipulator," ROBOMECH, vol.6, no.1, pp.1-15, 2019.
- [9] S. Kohlbrecher, O. Von, J. Meyer, and U. Klingauf, "A Flexible and Scalable SLAM System with Full 3D Motion estimation," in SSRR, pp.155–160, 2011. [10] OpenAI, "GPT-40," Accessed: June. 2024. Available:
- https://platform.openai.com/docs/models/gpt-40 [11] H. Biggie, A. Mopidevi, D. Woods, et al., "Tell Me Where
- to Go: A Composable Framework for Context-Aware Embodied Robot Navigation," in *CoRL*, 2023. [12] X. Zhou, et al., "Detecting Twenty-thousand Classes using
- Image-level Supervision," in ECCV, pp.350–368, 2022.

図 4 (a)SOPO および (b) 提案手法による定性的結果