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Abstract

In this study, we address the Scene-Text Oriented Re-

ferring Expression Comprehension (ST-REC) task, which

requires identifying and locating a target object in an im-

age corresponding to a scene-text oriented referring ex-

pression. Conventional REC methods do not explicitly

utilize scene-text, leading to limited performance in ST-

REC. To address this limitation, we propose the SEINE-

DeTR model that can identify target objects based on

complex textual expressions that include both scene-text

and visual attributes. We validated our method on the

RefText dataset. Experimental results demonstrate that

our method outperforms baseline methods in terms of Pre-

cision@0.5.

1. Introduction

In the field of Vision & Language, there exist many

tasks with promising societal applications, such as au-

tonomous driving [6, 5] and real-world search [12, 16]. In

these tasks, scene-text ―such as road signs and product

names― can serve as crucial cues for identifying or re-

ferring to objects. Particularly in the Referring Expres-

sion Comprehension (REC) task, using scene-text, along-

side object and spatial information, could be beneficial

across a range of applications, including assistive technol-

ogy for the visually impaired, landmark-based navigation,

and product search systems.

In this study, we address the Scene-Text Oriented Refer-

ring Expression Comprehension (ST-REC) task [1], which

requires identifying and locating a target object in an im-

age based on a scene-text oriented referring expression.

Figure 1 shows a typical use case for the ST-REC task.
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Reference: “The bottle with Niacin”

Fig. 1 A typical use case for the ST-REC task. Given an image

and a referring expression, the model aims to predict the

bounding box of the target object (shown in green).

In this example, several bottles are arranged in a row.

Given the input expression “The bottle with Niacin”, the

goal is to identify the bottle labeled “Niacin” as shown by

the green bounding box in the figure.

The ST-REC task is more challenging than the typi-

cal REC task. In fact, the human performance for this

task is reported to have a Precision@0.5 score of 93.71

points. However, even the best-performing existing ST-

REC model, STAN, achieved only 65.86 points for the

ST-REC task, while scoring up to 83.15 points for the

simple REC task [1], highlighting the difficulty of the ST-

REC task.

Conventional REC methods [9, 4, 11, 20, 2, 22], do

not explicitly utilize scene-text, leading to limited perfor-

mance in ST-REC [1]. Thus, methods like STAN, which

introduce mechanisms to process scene-text, have been

proposed. Yet, their performance still remains insufficient

as they struggle to accurately identify the target object in

samples where similar objects are present [1].

In this study, we propose SEINE-DeTR *1 which can

identify target objects based on complex textual expres-

*1 Scene-tExt aware referrIng ExpressioN comprEhension
Detection TRansformer
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Fig. 2 Overview of SEINE-DeTR.

sions that include both scene-text and visual attributes.

The main contributions of this study are as follows:

• We introduce Trimodal Fusion Module (TFM), which

enables the model to learn both the content and spa-

tial localization of scene-text by directly integrating

these cues into a query-based Transformer decoder.

• We propose Cross-Modality Decoder, which mod-

els spatial relationships between objects by lever-

aging detected texts, enabling the generation of

hallucination-robust narrative.

2. Method

The proposed method consists of two main modules:

Trimodal Fusion and Cross-modality Decoder. Figure 2

shows the structure of our proposed method.

The input to SEINE-DeTR is {ximg,xexp}. Here,

ximg ∈ RC×H×W and xexp ∈ {0, 1}v×l represent the im-

age and the referring expression, respectively. C, H and

W denote the number of channels, width and height of the

input image, while v and l correspond to the vocabulary

size of the referring expression and the maximum number

of tokens, respectively.

The language features vexp ∈ RDtxt are extracted from

xexp using Stella [23]. Here, Dtxt denotes the dimensional-

ity of the features. The image features vimg ∈ RDimg×Nimg

are extracted from ximg using DINOv2 [15]. Here, Dimg

and Nimg denote the dimensionality of the feature vectors,

and the sequence length of the extracted image tokens, re-

spectively. The multimodal features vmm ∈ RDmm×Nmm

are extracted from ximg and xexp using BEiT-3 [19]. Here,

Dmm and Nmm denote the dimensionality of the feature

vectors, and the sequence length of the extracted image

tokens, respectively.

2.1 Trimodal Fusion

In TFM, we integrate scene-text cues into the final rep-

resentation. Indeed, scene-text serves as crucial informa-

tion to uniquely identify the object, as is the case with

the expression “The bottle with Niacin” shown in Fig-

ure 1 in an environment containing several visually similar

bottles. However, conventional REC methods either fail

to explicitly leverage scene-text information or rely solely

on implicit text representations encoded within image fea-

tures. To address this limitation, we introduce TFM that

explicitly aligns textual embeddings from detected scene

texts with their spatial coordinates. These features are

combined with vexp and vimg to serve as input of a query

based transformer decoder.

First, we apply Azure AI Vision [13] to ximg for OCR,

extracting detected text alongside their coordinates, de-

noted as {textocr, posocr}. Each detected text instance

is then encoded using Stella [23], yielding the scene-text

language feature representation vst ∈ RNwords×Dtxt . Here,

Nwords and Dtxt denote the number of considered words

and the dimensionality of the text features, respectively.

At this stage, Sinusoidal Positional Encoding is applied

based on the corresponding coordinates posocr, incorpo-

rating positional information to obtain hst. In parallel,

we downsample vimg using a Convolutionnal Neural Net-

work (CNN) to obtain himg ∈ RNdown×Dimg . Here, Ndown

and Dimg correspond to the downsampled sequence length

and the dimensionality of the image features, respectively.

Subsequently, we derive the trimodal representation

htri ∈ R(Nwords+Ndown)×Dtri where Dtri denotes the dimen-

sionality to which all feature types are projected. This

representation is computed as follows:

htri = Enc(CrossAtt(SelfAtt([himg,hst]),vexp)), (1)

where Enc., CrossAtt. and SelfAtt. represent a trans-

former encoder, a cross-attention and a self-attention ar-

chitecture, respectively.

Following the MDETR architecture [9], we initialise

learnable queries q ∈ RNqueries×Ddec where Nqueries and

Ddec are the number of queries and the dimensionality of

the decoder, respectively. The output of this module is

computed as follows:

qdetr = CrossAttn(SelfAttn(q),htri). (2)
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Table. 1 Quantitative comparison between the proposed method and baseline methods.

[%] Methods Scenes
OOV ↑ Semantic

Info ↑
MiniRefer-

Text ↑
All ↑ Street ↑ Shelf ↑ Home ↑ Sport ↑ Others ↑

EVF-SAM [24] – – – – – – – – 29.47

Qwen2-VL-2b [18] – – – – – – – – 63.29

Qwen2-VL-7b [18] – – – – – – – – 64.73

GPT-4o [8] 5.68 7.38 6.60 6.67 4.62 3.19 5.14 3.94 1.45

STAN [1] 65.86 73.77 61.68 73.97 70.98 42.78 62.03 62.07 –

STAN (rep.) [1] 64.58±0.90 73.19±2.26 60.14±1.44 72.77±1.24 68.80±0.93 42.31±1.65 61.08±0.96 54.88±1.40 27.54±1.23

SEINE-DeTR (Ours) 70.37±0.30 80.02±0.70 61.79±0.63 74.06±0.54 84.30±0.30 42.95±0.77 62.35±0.57 62.13±0.79 66.95±1.48

Human performance 93.71 – – – – – – – –

2.2 Cross-modal Decoder

In Cross-Modality Decoder, we enhance the representa-

tion of queries by integrating multimodal features along-

side narrative representation features. In fact, some stud-

ies [7, 21] report that integrating narrative representation

features can enhance the comprehension of spatial rela-

tionships, which is beneficial for tasks such as ST-REC.

Most of them propose approaches using MLLMs to gener-

ate narrative representations, however, MLLMs frequently

produce hallucinations due to their limited comprehension

of scene-text [3]. To address this limitation, we incorpo-

rate the text extracted via third-party OCR directly into

the prompt, thereby enhancing scene text comprehension

of the MLLM.

In this module, we firstly generate hallucination-robust

narrative representation hnar from ximg. Specifically, we

generate a narrative description of ximg using GPT-4o

[8] with a prompt p which includes textocr. hnar is ob-

tained by encoding this narrative description using Stella.

The module then produces the refined output queries

q̃ ∈ RNqueries×Ddec defined as:

q̃ = GtdCrossAtt(GtdCrossAtt(qdetr,vmm),hnar), (3)

where GtdCrossAtt. represents a gated cross-attention

architecture.

The final model’s prediction is denoted as:

ŷ = {ĉx, ĉy, ŵ, ĥ} =
1

Nq

Nq∑
i=1

MLP(q̃i), (4)

where (ĉx, ĉy) are the predicted center coordinates of the

bounding box, and ŵ, ĥ denote the predicted width and

height of the bounding box, respectively. Additionally,

Nq represents the number of queries while q̃i is the i-th

output query.

Reference: “a bottle with a label that says 20 mg”

Fig. 3 A successful sample on the RefText dataset.

3. Experiments

3.1 RefText dataset and MiniReferText dataset

We primarily used the RefText dataset [1] to evalu-

ate our method. The RefText dataset contains 31,082

samples which were randomly divided into training, val-

idation, and test sets [1]. The training, validation, and

test sets contain 25,030, 2,022, and 4,030 samples, respec-

tively, with no duplicate images across these sets. The test

set is further divided into the subsets “Street”, “Shelf”,

“Home”, “Sport”, and “Others” containing 854, 561, 899,

996, and 720 samples, respectively. To evaluate the per-

formance of the model on out-of-vocabulary (OOV) and

semantic understanding, the test set includes additional

subsets “OOV” and “Semantic Information” which con-

sist of 1,459 and 762 samples, respectively.

To ensure a fair and reliable evaluation of model per-

formance, we constructed the MiniReferText dataset to

address potential data leakage concerns. Indeed, the Ref-

Text dataset was randomly partitioned into training, val-

idation, and test sets. Consequently, potential data leak-

age may arise when evaluating models trained on the
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original datasets from which the samples or images were

sourced. Notably, RefText incorporates samples from

widely used datasets, such as COCO-Text [17] and Visual

Genome [10], which are also utilised in training models

such as Qwen2-VL [18] and EVF-SAM [24].

To enable a comparative evaluation of our proposed

method against additional models under a zero-shot set-

ting, we developed the MiniReferText dataset. We con-

structed the dataset by selecting images from the recently

introduced Megalith-MDQA dataset [14]. Additionally,

we incorporated images we collected from a shopping mall,

resulting in a total of 54 images. Each image was manu-

ally annotated, resulting in a total of 207 samples. Each

sample consists of an English scene-text oriented referring

expression, accompanied by the corresponding bounding

box of the target object.

3.2 Quantitative results

Table 1 presents the quantitative results of the com-

parison between the baseline methods and the proposed

method. We reported the results of STAN [1] based on the

values reported in [1] as well as the values obtained from

our reproduction experiments (STAN (rep.)). We con-

ducted five experiments for STAN (rep.) and our method

and reported the mean and standard deviation. The best

scores are in bold.

The evaluation of the predicted bounding boxes was

based on Precision@0.5 (P@0.5). P@0.5 is calculated as

the proportion of correctly predicted bounding boxes out

of all the predicted bounding boxes where samples with

an IoU of 0.5 or higher were considered correct.

P@0.5 =
1

N

N∑
i=1

1(IoUi ≥ 0.5), (5)

where N denotes the total number of predicted bounding

boxes. For each sample, the Intersection over Union (IoU)

was calculated as shown below.

IoU =
|A ∩B|
|A ∪B|

, (6)

where, A and B denote the sets of pixels contained within

the ground truth and predicted bounding boxes, respec-

tively.

As listed in Table 1, SEINE-DeTR achieved a P@0.5

of 70.37%, while GPT-4o and STAN scored 5.68% and

65.86%, respectively. The proposed method exceeded the

highest among baselines, STAN, by 4.51 points in P@0.5

and achieved the best performances on all the different

subsets. In particular, on the subsets Street, Shelf, Home,

Sport and Others, our method outperformed STAN, the

highest among baselines by 6.25, 0.11, 0.09, 13.32 and

0.17 points, respectively. Furthermore, on the OOV and

SI, the proposed method outperformed STAN by 0.32 and

0.06 points, respectively.

On the MiniReferText dataset, SEINE-DeTR achieved

a P@0.5 of 66.95%, while EVF-SAM, Qwen2-VL-

2b, Qwen2-VL-7b, GPT-4o and STAN scored 29.47%,

63.29%, 64.73%, 1.45% and 27.54%, respectively. The

proposed method exceeded the highest among baselines,

Qwen2-VL-7b, by 2.22 points in P@0.5.

3.3 Qualitative results

Figure 3 shows a successful example on the RefText

dataset. In Figure 3, the green box shows the ground

truth bounding box, while the red box and blue box show

the bounding box predicted by STAN and SEINE-DeTR,

respectively.

In Figure 3, xexp is “a bottle with a label that says

20 mg”. The image depicts three bottles, with the two

rightmost ones labeled “15mg” and “20mg”, respectively.

STAN incorrectly predicted a bounding box for the bot-

tle labeled “15mg”. In contrast, the proposed method

correctly predicted a bounding box for the bottle labeled

“20mg”.

This result suggests that the proposed method effec-

tively identifies and understands the scene-text described

in the reference.

4. Conclusion

In this study, we handled the ST-REC task. Our key

contributions in this study are as follows:

• We introduced Trimodal Fusion Module (TFM),

which enables the model to learn both the content

and spatial localization of scene-text by directly in-

tegrating these cues into a query-based Transformer

decoder.

• We proposed Cross-Modality Decoder, which mod-

els spatial relationships between objects by lever-

aging detected texts, enabling the generation of

hallucination-robust narrative.

• Our method outperformed the baseline methods in

terms of the standard metrics.

In future studies, we plan to segment the original im-

ages into distinct patches in order to improve both input

resolution and spatial understanding.
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