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Abstract

This study addresses a task designed to predict the
alignment between a natural language instruction, a
pre-manipulation image, and an end-effector trajec-
tory. Conventional methods typically perform a suc-
cess prediction only after the manipulation is executed,
limiting their efficiency in executing the entire task se-
quence. We propose a novel approach that enables the
prediction of success or failure by aligning the given
trajectories and images with natural language instruc-
tions. We introduce Trajectory Encoder to apply learn-
able weighting to the input trajectories, allowing the
model to consider temporal dynamics and interactions
between objects and the end effector, improving the
model’s ability to predict manipulation outcomes ac-
curately. We constructed a dataset based on the RT-
1 dataset, a large-scale benchmark for open-vocabulary
object manipulation tasks, to evaluate our method. The
experimental results show that our method achieved a
higher accuracy than the baselines.

1 Introduction

Object manipulation is essential in fields, such as
household tasks [1] and agriculture [2, 3]. Gaining in-
sight into the success of this manipulation can improve
its efficiency and safety because it avoids potential dan-
gers caused by task failures and the unnecessary exe-
cution of tasks following object manipulation failures.

This study focuses on predicting the success of open-
vocabulary object manipulations. The task involves
predicting the success of the manipulations based on
a given end effector’s trajectory, an egocentric view of
the image before the manipulation, and a natural lan-
guage instruction sentence. These task functions are
challenging because they require considering future in-
teractions between objects and the end effector based
on the generated trajectory and their alignment with
the natural language instructions.

A typical example of the task is depicted in Fig. 1.
In this example, the instruction “Pick an apple from
the white bowl.” is given. Given that the manipulator
successfully grasps the apple from the white bowl, the
model should predict a successful object manipulation.

Most existing methods related to manipulation suc-
cess prediction perform the success/failure prediction

Figure 1. Task Example. “Pick an apple from
the white bowl.” is provided as a natural lan-
guage instruction. In this example, the model is
expected to predict ’Aligned’ because the object
manipulation is performed appropriately.

after the manipulation execution. A more desirable
approach would be to validate planned trajectories a
priori by assessing their consistency with the task con-
text, which includes both visual observations and nat-
ural language instructions.

While Vision-Language-Action (VLA) models [4–6]
are designed to address this limitation by performing
alignment between visual observations, language in-
structions, and planned trajectories, they often fail to
achieve sufficient alignment in practice. Indeed, for in-
stance, OpenVLA [6], a state-of-the-art VLA model,
achieved almost 0% success rate in zero-shot manipu-
lation tasks [7].

This study proposes a model for pre-manipulation
alignment prediction between natural language instruc-
tions, egocentric images, and planned trajectories. We
introduce Trajectory Encoder to apply weighting to the
trajectory using learnable parameters. This alignment
enables the interactions between objects and the end
effector to be determined from images and trajectories.
Consequently, unlike many existing methods, our ap-
proach enables predicting alignment between a natural
language instruction, an image, and a planned trajec-
tory before the manipulation execution.

The contributions of this research are as follows:

• We propose a model that predicts whether the task
specified by an instruction sentence can be appro-
priately executed by aligning the trajectory with
the pre-manipulation image.

• We introduce Trajectory Encoder to apply weight-
ing to the trajectory using learnable parameters.

2 Related Work

Collision prediction during object manipulation is
highly relevant to our work. For instance, post-
collision decision strategies have been proposed (e.g.,



Figure 2. Network overview of the proposed method. ‘Conv’ and ‘MLP’ represent the convolutional layer and
multi-layer perceptron, respectively.

[8]). Moreover, several methods predict collisions us-
ing images and placement policies [9–11]. Our method
differs from these approaches by considering factors be-
yond collisions contributing to task failure. Liu et al.
proposed a task failure prediction model [12]. They
proposed Failure Classifier to detect erroneous trajec-
tory generation based on images and predicted trajec-
tories. However, this model cannot process natural lan-
guage instructions, making it unsuitable for direct ap-
plication to the task addressed in this paper.

The proposed method is also closely related to sub-
task planning methods in long-horizon tasks [5,13,14].
Some approaches determine the success or failure of
a task after executing a subtask and replan sub-
sequent subtasks based on that assessment [14–16].
These methods are similar to the proposed method
because they evaluate task success. For example,
REFLECT [17] verifies whether predefined states are
achieved based on target states for each object class.
However, unlike these methods that only detect failures
during object manipulation, our proposed method pre-
dicts the alignment of inputs in a manipulation task
without relying on predefined target states.

Our task shares significant similarities with the
VQA task [18], which takes an image and a natural-
language question as input and outputs an appropri-
ate text-based answer. Existing VQA models exhibit
sophisticated spatial understanding, reasoning capabil-
ities, and the ability to follow instructions, thereby
achieving favorable performance across a wide range
of domains [19]. However, as shown in Sec. 5.2, even
state-of-the-art VQA models find our task challenging,
likely because it requires more advanced spatial rea-
soning for the appropriate alignment of the trajectory
with the image. To address this, our proposed method
introduces a cross-attention mechanism that explicitly
accounts for the alignment between the trajectory and
the image.

3 Problem Statement

This study focuses on Pre-Manipulation Alignment
Prediction (PMAP) for open-vocabulary object manip-
ulation. This task involves verifying the alignment be-
tween a natural language instruction sentence, a pre-
manipulation egocentric image, and a planned trajec-
tory. Given the pre-manipulation image, the trajec-
tory, and the instruction sentence, the model should
determine whether they are mutually aligned, indicat-
ing a likely successful manipulation. Fig. 1 illustrates
a typical example of the PMAP task.

In this episode, the natural language instruction is
given as “Pick an apple from the white bowl.” In this
example, models should predict ‘Aligned’ if the manip-
ulator picks the apple successfully, and ‘Hallucinated’
if it falls the apple.

In the PMAP task, the input consists of an egocen-
tric image, the trajectory of the end effector, and a
natural language instruction sentence. The expected
output is the predicted probability p(ŷ = 1). y and ŷ
denote a label and predicted label, respectively. The
condition y = 1 indicates that the planned trajectory,
the egocentric image, and the given natural language
instruction are aligned. The input image is exclusively
the one captured just before the manipulation. Con-
sequently, the model is required to infer the final state
of the manipulation from the trajectory data and this
single pre-manipulation image, making the task par-
ticularly challenging. In this study, we assume that
trajectory generation is out of scope.

4 Proposed Method

Fig. 2 shows an overview of the proposed method.
The proposed method consists of Trajectory Encoder
and λ-Representation Encoder. The input to the model
is denoted as x = {xtxt,ximg,xtraj}, where xtxt, ximg,
and xtraj are the egocentric view image before object
manipulation, the natural language instruction, and
the end effector trajectory, respectively. xtraj has a
time series of length T . In the proposed method, the



language feature htxt is first obtained from xtxt.

4.1 Trajectory Encoder
We introduce Trajectory Encoder, which is designed

to filter the trajectory using learnable weights. This fil-
tering process enables temporal trajectory compression
for more efficient representation and processing.

The input to this module is xtraj ∈ RD×T , and the
output is htraj, where D denotes the number of de-
grees of freedom of the manipulator. This module is
composed predominantly of convolutional and pooling
layers.

First, we obtain xconv ∈ RD×T by applying a con-
volutional layer along the time dimension, capturing
temporal patterns. The convolution focuses on model-
ing temporal dependencies in the trajectory data. We
then apply a pooling layer along the time dimension
of xconv, reducing it from T to dtrm, resulting in a
processed tensor htraj ∈ RD×dtrm . This approach effi-
ciently models the temporal dynamics of trajectories.

4.2 λ-Representation Encoder
Solving the PMAP task requires understanding the

positional information of each object in the input image
to predict whether the trajectory is interacting with the
appropriate object.

In the PMAP task, models are required to predict
the success or failure of object manipulation based
on open-vocabulary manipulation instructions, images,
and trajectories. Thus, it is essential to ensure proper
alignment with natural language to predict whether the
manipulation instruction can be executed based on the
images.

Therefore, we employ the λ-representation [20] as
a visual feature aligned with natural language. This
representation has been reported to be more effective
than visual features obtained from the image encoder
of CLIP, which is also aligned with natural language.

This module extracts the λ-representation hλ from
the input image. The input to this module is ximg,
and the output is hλ. The process in this module is
based on the λ-Representation Encoder module [20]. In
contrast, for Narrative Representation, we use GPT-4o
to generate a description about ximg.

We then compute cross-attention between [hλ;htraj]
and htxt using the N -layer transformer encoder-
decoder. Finally, we obtain the predicted probability
p(ŷ) of successful object manipulation.

5 Experiments
5.1 Experimental Settings

We constructed a dataset by extending the SP-
RT-1 dataset [20]. The SP-RT-1 dataset was built
based on the RT-1 dataset [5]. The SP-RT-1 dataset
includes images before and after object manipula-
tion, object manipulation instruction sentences, and
‘Aligned’/‘Hallucinated’ labels for each episode of ob-
ject manipulation. In contrast, the PMAP task re-
quires a dataset that includes egocentric view images

Method Accuracy [%]
Qwen2-VL [19] 52.1 ± 0
GPT-4o [21] 69.4 ± 0.64
Contrastive λ-Repformer [20] 77.7 ± 0.65
Ours w/o Traj. Enc. 83.2 ± 0.48
Ours 83.4 ± 0.65

Table 1. Quantitative results. ‘Ours w/o Traj.
Enc.’ refers to the proposed method where Tra-
jectory Encoder is replaced with a linear func-
tion. Bold indicates the accuracy with the high-
est value.

before object manipulation, end effector trajectories,
natural language instructions, and task outcome labels
indicating ‘Aligned’ or ‘Hallucinated’. Therefore, be-
cause the SP-RT-1 dataset generally contains the in-
formation required for the PMAP task, we constructed
our dataset based on the SP-RT-1 dataset.

The end effector trajectories in each episode were
lacking when using the SP-RT-1 dataset for the PMAP
task. We adapted the trajectories included in the RT-1
dataset for the PMAP task by collecting the trajecto-
ries. We split the dataset as follows in [20].

The constructed dataset includes 13,915 samples,
split into 11,915 training samples, 1,000 validation
samples, and 1,000 test samples. The manipulator
used for data collection had a seven-dimensional ac-
tion space [5]. An additional dimension was related to
the opening and closing of the end effector. Therefore,
the trajectory at each timestep has eight dimensions.

We used an NVIDIA GeForce RTX 4090 with 24GB
of VRAM, 64GB of RAM, and an Intel Core i9–
13900KF. The training time for the proposed method
was approximately 1.5 hours, and the inference time,
excluding feature extraction, was 0.78 ms per sample.

5.2 Quantitative Results
Table 1 presents the quantitative results, including

the means and standard deviations. We conducted the
experiments five times. In our experiments, In our ex-
periments, we used GPT-4o [21], Qwen2-VL [19], and
Contrastive λ-Repformer [20] as the baseline methods.
Accuracy was used as the evaluation metric.

We selected these baseline methods for the following
reasons: GPT-4o is a representative multimodal large
language model that has been pre-trained on large-
scale datasets and has exhibited remarkable perfor-
mance in a variety of tasks, including VQA. Addition-
ally, Qwen2-VL is a state-of-the-art VQA model. We
chose Contrastive λ-Repformer because it has demon-
strated remarkable results on the Success Prediction
for Open-vocabulary Manipulation (SPOM) task [20],
which is closely related to the PMAP task.

Contrastive λ-Repformer was trained on our
dataset, whereas experiments for other baseline mod-
els were conducted in zero/few-shot settings. Post-
manipulation images were not provided to Contrastive



Figure 3. Qualitative results. Panels (i), (ii), and
(iii) represent the True Positive, True Negative,
and False Negative examples, respectively. The
leftmost image in each panel illustrates the scene
before manipulation.

λ-Repformer to prevent leakage of the object manip-
ulation outcomes. These baselines cannot directly ac-
cept trajectories as inputs; therefore, we used images
with the trajectory overlaid onto the pre-manipulation
image as the input. For GPT-4o, two samples were
included in the prompt as examples. That is, GPT-4o
was used in a few-shot setting. On the other hand,
since Qwen2-VL has difficulty handling multiple im-
ages as input, no sample examples were included in
the prompt.

The baseline methods Qwen2-VL, GPT-4o, and
Contrastive λ-Repformer achieved accuracies of 52.1%,
69.4%, and 77.7%, respectively. In contrast, our pro-
posed method attained an accuracy of 83.4%, out-
performed the best baseline method, Contrastive λ-
Repformer, by 5.7 points. We attribute these results to
the proposed method’s ability to predict future situa-
tions based on trajectory information more effectively
than the other methods.

5.3 Qualitative Results
Fig. 3 illustrates the qualitative results. Panels (i),

(ii), and (iii) are examples of True Positive, True Neg-
ative, and False Negative, respectively.

In Fig. 3(i), the instruction was “Pick rxbar blue-
berry.” and the manipulator successfully grasped the
protein bar. Therefore, the label for this episode was
‘Aligned’. The proposed method correctly predicted
‘Aligned’, whereas the baseline method incorrectly pre-
dicted ‘Hallucinated’.

In the episode depicted in Fig. 3(ii), the instruc-
tion was “Pick orange can from bottom drawer and
place on counter.” However, the manipulator failed
to grasp the can and could not retrieve it from the
drawer. Therefore, the label for this episode was ‘Hal-
lucinated’. The proposed method correctly predicted
‘Hallucinated’ for this episode. The baseline method
incorrectly predicted ‘Aligned’. These results indicate
that the proposed method could appropriately predict

the alignment of object manipulation by considering
the end effector’s trajectory and the positions of ob-
jects within the image.

In contrast, Fig. 3(iii) illustrates an example where
the proposed method made an incorrect prediction. In
this episode, the instruction was “Move water bottle
near rxbar chocolate.” The manipulator moved the
chocolate bar close to the water bottle, so the label was
‘Aligned’. However, the proposed method predicted
‘Hallucinated’. This episode was likely difficult because
it necessitated accurately interpreting the spatial po-
sitions of multiple objects and aligning the trajectory
with those positions.

5.4 Ablation Study

As an ablation study, we investigated the effective-
ness of performance when Trajectory Encoder was re-
moved. Table 1 also presents the results. In the table,
‘Ours w/o Traj. Enc.’ represents the model where
Trajectory Encoder was replaced with a linear func-
tion. The accuracies of Models (i) and (ii) were 83.2%
and 83.4%, indicating a 0.2-point improvement using
Trajectory Encoder. The simple-weighting approach
applied within Trajectory Encoder produced a slight
improvement.

6 Conclusions

In this study, we focused on a task to predict the
alignment between natural language instructions, ego-
centric view images before manipulation, and end ef-
fector trajectories.

Our contributions are as follows:

• We proposed a model that predicts whether an
instruction sentence, a trajectory, and a pre-
manipulation image are appropriately aligned or
not.

• We introduced Trajectory Encoder, which applies
weighting to the trajectory using learnable param-
eters.

• The experimental results demonstrated that our
method achieved higher prediction accuracy than
the baseline method.

As a potential future direction, it is conceivable
to combine the proposed approach with VLA mod-
els [4–6]. As discussed in Sec. 1, many current VLA
models exhibit insufficient alignment between modali-
ties, which can lead to the generation of inappropriate
trajectories. Moreover, in most cases, those models
lack mechanisms to evaluate the validity of the trajec-
tories they generate, making it challenging to prevent
the execution of erroneous trajectories. By applying
the proposed method to these methods, it becomes pos-
sible to select and execute the suitable trajectory from
a set of candidates generated by VLA models, thereby
enabling more effective execution of object manipula-
tion tasks.
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